首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5822篇
  免费   440篇
  国内免费   1篇
  2023年   48篇
  2022年   48篇
  2021年   168篇
  2020年   126篇
  2019年   143篇
  2018年   187篇
  2017年   166篇
  2016年   263篇
  2015年   344篇
  2014年   370篇
  2013年   419篇
  2012年   574篇
  2011年   457篇
  2010年   268篇
  2009年   252篇
  2008年   330篇
  2007年   275篇
  2006年   268篇
  2005年   254篇
  2004年   260篇
  2003年   213篇
  2002年   204篇
  2001年   52篇
  2000年   42篇
  1999年   55篇
  1998年   59篇
  1997年   44篇
  1996年   29篇
  1995年   29篇
  1994年   34篇
  1993年   29篇
  1992年   26篇
  1991年   22篇
  1990年   18篇
  1989年   13篇
  1988年   14篇
  1987年   6篇
  1986年   15篇
  1985年   18篇
  1984年   8篇
  1983年   10篇
  1982年   15篇
  1981年   11篇
  1980年   7篇
  1978年   10篇
  1977年   5篇
  1975年   6篇
  1974年   5篇
  1968年   6篇
  1961年   4篇
排序方式: 共有6263条查询结果,搜索用时 187 毫秒
991.
Snake venom proteome variation is a well-documented phenomenon, whereas peptidome variation is still relatively unknown. We used a biological approach to explore the inhibitory activities present in the whole venom of Bothrops jararaca that prevents the venom self-proteolysis and/or digestion of the glandular tissue. Although snake venom metallopeptidases have long been known from the biochemical up to the clinical point of view, the mechanisms by which these enzymes are regulated in the reptile's venom gland remain fairly unknown. We have successfully demonstrated that there are three synergistic weak inhibitory mechanisms that are present in the crude venom that are able to abolish the metallopeptidase activity in situ, namely: (i) citrate calcium chelation; (ii) acidic pH and; (iii) enzymatic competitive inhibition by the tripeptide Pyroglutamyl-lysyl-tryptophan. Taken together, these three factors become a strong set-up that inhibits the crude venom metallopeptidase activity as well as a purified metallopeptidase from this same venom. However, this inhibition can be totally reverted by dilution into an optimal pH solution, such as the blood.  相似文献   
992.
Receptor heteromerization is a mechanism used by G protein-coupled receptors to diversify their properties and function. We previously demonstrated that these interactions occur through salt bridge formation between epitopes of the involved receptors. Recent studies claim that calmodulin (CaM) binds to an Arg-rich epitope located in the amino-terminus of the dopamine D(2) receptor third intracellular loop. This is the same epitope involved in adenosine A(2A)-D(2) receptor heteromerization, through Coulombic interaction between the Arg residues and a phosphorylated serine (pS) located in the medial segment of the C-terminus of the A(2A) receptor. Mass spectrometric analysis indicates that an electrostatic interaction involving the D(2) receptor Arg-rich epitope and several CaM acidic epitopes are mainly responsible for the D(2) receptor-CaM binding. CaM could also form multiple noncovalent complexes by means of electrostatic interactions with an epitope localized in the proximal segment of the C-terminus of the A(2A) receptor. Ca(2+) disrupted the binding of CaM to the D(2) but not to the A(2A) receptor epitope, and CaM disrupted the electrostatic interactions between the D(2) receptor epitope and the more distal A(2A) receptor epitope. A model is introduced with the possible functional implications of A(2A)-D(2)-CaM interactions. These in vitro findings imply a possible regulatory role for CaM in receptor heteromers formation.  相似文献   
993.
The rate of mutation is central to evolution. Mutations are required for adaptation, yet most mutations with phenotypic effects are deleterious. As a consequence, the mutation rate that maximizes adaptation will be some intermediate value. Here, we used digital organisms to investigate the ability of natural selection to adjust and optimize mutation rates. We assessed the optimal mutation rate by empirically determining what mutation rate produced the highest rate of adaptation. Then, we allowed mutation rates to evolve, and we evaluated the proximity to the optimum. Although we chose conditions favorable for mutation rate optimization, the evolved rates were invariably far below the optimum across a wide range of experimental parameter settings. We hypothesized that the reason that mutation rates evolved to be suboptimal was the ruggedness of fitness landscapes. To test this hypothesis, we created a simplified landscape without any fitness valleys and found that, in such conditions, populations evolved near-optimal mutation rates. In contrast, when fitness valleys were added to this simple landscape, the ability of evolving populations to find the optimal mutation rate was lost. We conclude that rugged fitness landscapes can prevent the evolution of mutation rates that are optimal for long-term adaptation. This finding has important implications for applied evolutionary research in both biological and computational realms.  相似文献   
994.
995.
This work describes for the first time a structural model of purine nucleoside phosphorylase from Streptococcus agalactiae (SaPNP). PNP catalyzes the cleavage of N-ribosidic bonds of the purine ribonucleosides and 2-deoxyribonucleosides in the presence of inorganic orthophosphate as a second substrate. This enzyme is a potential target for the development of antibacterial drugs. We modeled the complexes of SaPNP with 15 different ligands in order to determine the structural basis for the specificity of these ligands against SaPNP. The application of a novel empirical scoring function to estimate the affinity of a ligand for a protein was able to identify the ligands with high affinity for PNPs. The analysis of molecular dynamics trajectory for SaPNP indicates that the functionally important motifs have a very stable structure. This new structural model together with a novel empirical scoring function opens the possibility to explorer larger library of compounds in order to identify the new inhibitors for PNPs in virtual screening projects.  相似文献   
996.
Ordog R 《Bioinformation》2008,2(8):346-347
The fast growing Protein Data Bank (PDB) contains a vast amount of 3-dimensional data on proteins, and nucleic-acid structures obtained by X-ray crystallography and Nuclear Magnetic Resonance (NMR) spectroscopy. PyDeT is a PyMOL (molecular visualization software system) plug-in that visualize tessellations derived from the protein structure along with the source protein. PyDeT is released under a GNU General Public License (GPL) and is available from the authors.  相似文献   
997.
Bovine preantral follicles within ovarian fragments were exposed and cryopreserved in absence or presence of 1.5 M glycerol (GLY), ethylene glycol (EG), propanediol (PROH) or dimethyl sulfoxide (DMSO), undergoing a previous cooling at 20 °C for 1 h (protocol 1) or at 4 °C for 24 h (protocol 2) in 0.9% saline solution. At the end of each treatment, preantral follicles were classified as non-viable/viable when they were stained/not stained with trypan blue, respectively. To confirm viability staining, ultra-structure of the follicles was evaluated by transmission electronic microscopy (TEM). Data were compared by Chi-square test (P < 0.05). The storage of the ovaries at 20 °C for 1 h (78%) and 4 °C for 24 h (80%) did not reduce significantly the percentage of viable preantral follicles when compared to the control (75%). Similar results were obtained when ovarian fragments, respectively, for protocols 1 and 2, were exposed to MEM (78 and 77%), 1.5 M EG (78 and 71%), as well as frozen in 1.5 M EG (74 and 77%). Percentages of viable follicles in control were similar to those observed after exposure (75%) and freezing (76%) in presence of 1.5 M DMSO only when protocol 1 was used. The increase of the concentration from 1.5 to 3.0 M, for all cryoprotectants, reduced significantly the percentage of viable preantral follicles after freezing. Ultra-structural analysis has confirmed trypan blue results, showing that not only basement membrane, but also organelles, were intact in viable preantral follicles. In conclusion, ovarian tissue cooling at 4 °C for 24 h before cryopreservation (protocol 2) does not affect the viability of bovine preantral follicles when 1.5 M EG is present in the cryopreservation medium.  相似文献   
998.
The processes of accumulation and mobilization of carbohydrate stores in eggs of Rhodnius prolixus were analyzed. During oogenesis, the total amounts of glycogen, glucose, and trehalose increased with an accumulation of proteins, especially when oocytes grew from 1.0 to 1.5 mm in length. At 2.0 mm length, when oocytes were ready for oviposition, nutrient reserves did not increase appreciably and trehalose content decreased. Mating did not affect the final content of carbohydrates or proteins in oocytes of mated and virgin females. A trehalase activity was detected in follicles containing vitellogenic oocytes, 1.0 and 1.5 mm length, in both mated and virgin females. This activity was extremely low in chorionated, 2.0-mm oocytes. After oviposition, glycogen content decreased in fertilized eggs, but not in unfertilized ones, and some was present in newly hatched nymphs. Glucose content remained constant in unfertilized eggs, but increased in fertilized ones, while total protein amount was constant in both groups after egg laying.  相似文献   
999.
1000.
Free radical production is implicated in the pathogenesis of diabetes mellitus, where several pathways and different mechanisms were suggested in the pathophysiology of the complications. In this study, we used electron paramagnetic resonance (EPR) spectroscopy combined with in vivo spin-trapping techniques to investigate the sources and mechanisms of free radical formation in streptozotocin-induced diabetic rats. Free radical production was directly detected in the diabetic bile, which correlated with lipid peroxidation in the liver and kidney. EPR spectra showed the trapping of a lipid-derived radical. Such radicals were demonstrated to be induced by hydroxyl radical through isotope-labeling experiments. Multiple enzymes and metabolic pathways were examined as the potential source of the hydroxyl radicals using specific inhibitors. No xanthine oxidase, cytochrome P450s, the Fenton reaction, or macrophage activation were required for the production of radical adducts. Interestingly, inducible nitric oxide synthase (iNOS) (apparently uncoupled) was identified as the major source of radical generation. The specific iNOS inhibitor 1400W as well as L-arginine pretreatment reduced the EPR signals to baseline levels, implicating peroxynitrite as the source of hydroxyl radical production. Applying immunological techniques, we localized iNOS overexpression in the liver and kidney of diabetic animals, which was closely correlated with the lipid radical generation and 4-hydroxynonenal-adducted protein formation, indicating lipid peroxidation. In addition, protein tyrosine nitration occurred in the diabetic target organs. Taken together, our studies support inducible nitric oxide synthase as a significant source of EPR-detectable reactive intermediates, which leads to lipid peroxidation and may contribute to disease progression as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号